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Abstract— It is well known that the classic image compression 

techniques such as JPEG and MPEG have serious limitations at 

high compression rate; the decompressed image gets really fuzzy 

or indistinguishable. To overcome problems associated with 

conventional methods, artificial neural networks based method 

can be used. Genetic algorithm is a very powerful method for 

solving real life problems and this has been proven by applying to 

number of different applications. There is lots of interest to 

involve the GA with ANN for various reasons at various levels. 

Trapping in the local minima is one of the well-known problems 

of gradient decent based learning in ANN. The problem can be 

addressed using GA algorithm. But no work has been done to 

evaluate the performance of both learning methods from the 

image compression point of view. In this paper, we investigate the 

performance of ANN with GA in the application of image 

compression for obtaining optimal set of weights. Direct method 

of compression has been applied with neural network to get the 

additive advantage for security of compressed data. The 

experiments reveal that the standard BP with proper parameters 

provide good generalize capability for compression and is much 

faster compared to earlier work in the literature, based on 

cumulative distribution function. Further, the results obtained 

shows that general concept about GA, it performs better over 

gradient decent based learning, is not applicable for image 

compression. 

Keywords- Image compression; genetic algorithm; neural network; 

back propagation. 

I.  INTRODUCTION 

Artificial neural network (ANN) technique has been used 
successfully for image compression with various ways [10, 
11,12,13,21].  A detail survey of about how ANN can be 
applied for compression purpose is reported in [1,14,15,16,17]. 
Broadly, two different categories for improving the 
compression methods and performance have been suggested. 
Firstly, develop the existence method of compression by use of 
ANN technology so that improvement in the design of existing 
method can be achieved. Secondly, apply neural network to 
develop the compression scheme itself, so that new methods 
can be developed and further research and possibilities can be 
explored for future. Statistical approaches are applied in 
integration with neural network for enhancement of 
compression performance. In [2,18], principal component 
analysis (PCA) is applied for this purpose. PCA is one of the 
famous statistical methods which eliminates the correlation 
between different data components and consequently decrease 
the size of data. In classical method, covariance matrix of input 

data is used for extracting singular values and vectors. Neural 
networks are used for extracting principal value components in 
order to compress image data. First, different principal 
component analysis neural networks is presented and then a 
nonlinear PCA neural network is used which provides better 
results as shown in simulation results. Speed is one of the 
fundamental issues that always appear in the application of 
image compression. In [4,19,20,22], the problems associated 
with neural network for compression is discussed. Authors 
have given the concept of reduction of original feature space, 
which allows us to eliminate the image redundancy and 
accordingly leads to their compression. Two variants of neural 
network they have suggested: two layers neural network with 
self learning algorithm based on the weighted information 
criterion and auto–associative four layers feed forward 
network. In [5,23,24,25], a constructive One-Hidden-Layer 
feed forward Neural Network (OHL-FNN) architecture has 
been applied for image compression. The BPNN has taken as 
the simplest architecture of ANN that has been developed for 
image compression but its drawback is very slow convergence.   

II. FEED FORWARD ARTIFICIAL NEURAL NETWORKS 

In feed forward architecture  having  multilayer 
perceptrons, the basic computational unit, often referred to as a 
“neuron,” consists of a set of “synaptic” weights, one for every 
input, plus a bias weight, a summer, and a nonlinear function 
referred to as the activation function . Each unit computes the 
weighted sum of the inputs plus the bias weight and passes this 
sum through the activation function to calculate the output 

value as yj = f(∑i wjixi + θi)   ,where is the ith input value 

for the neuron and  is the corresponding synaptic weight. 

The activation function  maps the potentially infinite range 
of the weighted sum to a limited, finite range. A common 

activation function is a sigmoid defined as   

 In a multilayer configuration, the outputs of the units in 
one layer form the inputs to the next layer. The inputs to the 
first layer are considered as the network inputs, and outputs of 
the last layer are the network outputs. The weights of the 
network are usually computed by training the network. 

A. Evolution of weights in neural network using GA 

In recent times much research has been undertaken in the 
combination of two important and distinct areas: genetic 
algorithm and neural networks. Genetic algorithms attempt to 
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apply evolutionary concept to the field of problem solving, 
notably function optimization and have proven to be valuable 
in searching large, complex problem spaces. Neural networks 
are highly simplified models of the working of brain. These 
consist of a combination of neurons and synaptic connections, 
which are capable of passing data through multiple layers. The 
end result is a system which is capable of pattern and 
classification. In the past, algorithm such as back propagation 
have been developed which refine one of the principle 
components of the neural networks: connection weights. The 
system has worked well, but is prone to becoming trapped in 
local optima and is incapable of optimization where problems 
lie in a multi-model or non-differentiable problem space. 
Genetic algorithms and neural networks can be combined such 
that populations of neural networks compete with each other in 
a Darwinian „survival of the fittest‟ setting. Networks which 
are deemed to fit are combined and passed onto the next 
generation producing an increasingly fit population, so that 
after a number of iterations for an optimized neural network 
can be obtained without resorting to a design by hand method. 
The primary motivation for using evolutionary technique to 
establish the weighting values rather than traditional gradient 
decent techniques such as back propagation lies in the inherent 
problems associated with gradient descent approaches.  

The evolution of neural networks can be classified 
according to the goals behind such evolution. Some schemes 
have proposed by introducing the evolution of weights with the 
fixed architecture. Other level of evolution where improvement 
can be expected is in the architecture is the transfer function 
[yao]. 

B. Chromosome, Crossover & mutation operation to generate 

the offspring  

Initially, a population of chromosomes created contains a 
uniformly distributed random number. Chromosomes directly 
representing the weights of neural network are shown in fig.2. 
Hence, there is no need of any encoding mechanism in result. 
Crossover here can be defined as node crossover. From picked 
up two parents for generating off springs, any one active node 
from the set of hidden and output layer, pick up randomly with 
equal probability. This node consider as a node of crossover. 
Values of all incoming weights for that particular node are 
exchanged with available other parent. Mutation can also be 
considered as node mutation, where in an offspring, all 
incoming weights for a randomly picked up active node added 
with Gaussian distributed random numbers. These two 
processes are shown in fig.3and fig.4, respectively.  

C. Algorithm for weights evolution by   GA in ANN 

The following steps are performed for determining the 
optimal value of weights. 

(i)A population of µ parent solution Xi, i=1,…. µ, is initialized 

over a region M є Rn. 

(ii)Two parents are selected randomly with uniform 

distribution from population of µ parents, and two offspring 

will created by crossover operator as shown in Fig.2. 

(iii)Mutation on newly generated offspring will be applied as 

shown in Fig .3. 

(iv)Repeat step (ii) until population of offspring µo equal to µ, 

otherwise move to step (v). 

(v)Each parent solution Xi, i=1,…. µ and offspring Xo, o=1,…. 

µ,is scored  in light of the objective function ƒ(X). 

(vi)A mixture population Xm, m = 1,…,2 µ contains both 

parent population and offspring population created. This 

mixture population randomly shuffled so that parents and 

offspring could mix up properly. 

(vii)Each solution from  Xm, m = 1,…,2 µ  is evaluated against 

10% of µ other randomly chosen solutions from the mix 

population  Xm .For each comparison a „win‟ is assigned if the 

solution‟s score is less than or equal to that of its opponent. 

(viii)The µ solutions with the greatest number of wins are 

retained to be parents of the next generation. 

(ix)If the difference in the best chromosome for N number of 

continuous generation are less than the defined threshold value 

k, terminate the process and the last generation best 

chromosome is the optimal weights, otherwise proceed to step 

(ii). 

D. Weight  optimization with back propagation  algorithm. 

Back propagation algorithm is a supervised learning 
algorithm which performs a gradient descent on a squared error 
energy surface to arrive at a minimum. The key to the use of 
this method on a multilayer perceptrons is the calculation of 
error values for the hidden units by propagating the error 
backwards through the network. The local gradient for the jth 
unit, in the output layer is calculated as (assuming a logistic 
function for the sigmoid nonlinearity)  

                       (1) 

 
where yj is the output of unit j and dj is the desired response for 
the unit. For a hidden layer, the local gradient for neuron j is 
calculated as  

 

                                  

(2) 

 
where the summation k is taken over all the neurons in the next 
layer to which the neuron j serves as input. Once the local 
gradients are calculated, each weight wji is then modified 
according to the delta rule 

           (3) 

Where a learning-rate parameter and t is time. 
Frequently modification is used that incorporates a momentum 
term that helps to accelerate the learning process 

 
 

Where  is a momentum term lying in the range 0 <  < 1. 

III. IMAGE COMPRESSION STRUCTURE USING  PERCEPTRONS 

NEURAL NETWORK 

The structure to compress images is the three layer 
perceptrons, depicted in Fig.11. In order to use structure, the 
input image is divided into blocks with pixels equal to the same 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Special Issue on Image Processing and Analysis 

28 | P a g e  

www.ijacsa.thesai.org 

number of neurons in input layer, say N. It means that these 
blocks should be of order √N × √N (in this paper this size is 
8*8) so that they can be expressed in N dimensional vector and 
fed into the input layer. The hidden layer in this structure is the 
compressed image which maps N pixels to K (K<N) and 
finally the reconstructed image from compressed one is derived 
with the same number of pixels/neurons as the input. In this 
structure the input weights to the hidden layer are a transform 
matrix which scales the input vector of N-dimensional into a 
narrow channel of k-dimensional. Similarly, the weights of 
hidden to output layer are a transform matrix which scales the 
narrow vector of K-dimensional into a channel of N-
dimensional. The input gray-level pixel values are normalized 
to the range [0, 1]. The reason for using normalized pixel 
values is due to the fact that neural networks can operate more 
effectively when both their inputs and outputs are limited to a 
range of [0, 1]. Learning is applied to train the architecture. All 
patterns in the input blocks of training set are also fed to output 
layer as the target. Once training is completed with proper 
performance, final weights are having the capability to map the 
input value of pixels into approximate same value at the output. 
Compression process is defined by taking the  half of the 
trained architecture which has been utilize at the time of 
training ,i.e. input layer along with the hidden layer as shown 
in Fig.12. Remaining half of the trained architecture i.e. hidden 
layer along with output layer is utilized to setup the 
decompression, as shown in Fig.13. 

IV. PERFORMANCE PARAMETERS 

Evaluation criteria used for comparison in this paper, is 

compression ratio (CR) and the peak signal-to-noise ratio 
(PSNR). For an Image with R rows and C columns,  PSNR is 
defined as follows: 

 
 

Compression ratio (CR) which is a criterion in compression 
problems is defined as the number of bits in original image to 
number of bits in the compressed image. This criterion in the 
sense of using neural net structure is defined as follow: 

 N . BI 

CR =  

             K . BH 
 

 In this equation N and K are the neurons/pixels available in 

the input and hidden layer respectively and and   are 
the number of bits needed to encode outputs of input and 
hidden layer. If the number of bits needed to encode the input 
layer and the number of bits needed to encode the hidden layer 
be the same, the compression ratio will be the number of 
neurons in the input layer to hidden layer. As an example for 
the gray level images which are 8 bits long if we encode the 
compressed image with the same number of bits in a block of 
8×8 and the network of with 16 neurons at the hidden layer, the 
compression ratio will be 4:1. And for the same network with

 floating point used to encode the hidden layer, the 
compression ratio will be 1:1 which means no compression. 

To verify the developed design for evolving the weights of 
neural network two different experiments are considered as 
explained in the following section. This will give the 
confidence to apply the developed method for image 
compression. 

V.   PATTERN RECOGNITION AND THE XOR PROBLEM 

The pattern recognition problem consists of designing 
algorithms that automatically classify feature vectors 
associated with specific patterns as belonging to one of a finite 
number of classes. A benchmark problem in the design of 
pattern recognition systems is the Boolean exclusive OR 
(XOR) problem. The standard XOR problem is shown in figure 
below. Here, the diagonally opposite corner-pairs of the unit 
square form two classes, A and B (or NOT A). From the figure, 
it is clear that it is not possible to draw a single straight line 
which will separate the two classes. This observation is crucial 
in explaining the inability of a single-layer perceptrons to solve 
this problem .This problem can be solved using multi-layer 
perceptrons (MLPs), or by using more elaborate single-layer 
ANNs.  

A. Performance of GA with ANN for weight evolution over 

XOR problem. 

A feed forward architecture of 2-2-1 designed and weights 
has evolved by above defined method of GA. Population size 
taken as 20 and condition of terminating criteria is, if the best 
chromosome error in 50 continuous generation is less than 
0.00001. 

 
 

Figure.1. Error performance with generation for best chromosome. 
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Figure 2.  Chromosome development 

 

Figure 3.  Crossover operation 

 
Figure 4.  Mutation operation 

B. Performance of GA with ANN for weight evolution over 

one block of image 

To see the performance of GA based weights optimization 
design over real image, a block of image containing 8*8 pixels 
has been taken. Population of 50 chromosomes is taken with 16 
hidden nodes in ANN architecture. To see the proper 
convergence a large value of generation 2000 has defined for 
termination. Performance of experiment has shown in table 
(2).Mapping result is shown below. Convergence of learning 
for best chromosome is shown in Fig. 5.  

(a)  Input block:  

 

 

 

 

 

 

(b) mapped output: 

 

Figure 5. Error performance 

With the above two different experiments, performance 
given by GA based weights optimization seems very 
impressive and results show the design of GA for neural 
learning is working better. This has given enough confidence to 
deploy the GA for image compression. 

VI. IMAGE COMPRESSION WITH GA AND ANN 

A population of 50 chromosomes is applied for evolving 
the weights up to 200 generations. Compression ratio for this 
experiment defined as 4:1. Performance plot for compression is 
shown in Fig.6 and in Fig.7 .Decompression result of Lena 
image is shown in Fig.8. Table (3) shows the parameter values. 
From the result it is very clear that the process is taking very 
long time for completing the cycle of generation. Even 
convergence is not proper and the result of compression 
performance is very poor and cannot be consider for practical 
purpose. 
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Figure 6. Population Error plot 

 

 
Figure 7. Best chromosome Error plot 

 

 
 

Figure8: Decompression by GA with ANN 

VII. IMAGE COMPRESSION USING ANN AND STANDARD 

BACK PROPAGATION ALGORITHM 

Standard back propagation is one of the most widely used 
learning algorithms for finding the optimal set of weights in 
learning. A single image “Lena” is taken as training data. The 
error curve of learning is shown in Fig.9 for below defined set 
of parameters. Further, different images are tested to generalize 
the capability of compression. The processes repeated for two 
different compression ratio by changing the number of hidden

 nodes in neural architecture. The performance observed during 
the time of training and testing is shown in table 4, table 5 for 
compression ratio 4:1 and in table 6, table 7 or 8:1, 
respectively. Table 8 given the comparison with [9] 

 

Figure 9. Error plot in back propagation 

Compression ratio: 4:1   

 

 
 

Figure 10. Performance by gradient decent 
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Parameter setting for  back propagation learning: 

Initial random weights value taken from uniform 

distribution in range of  [-0.0005 +0.0005]. Learning 

rate:    0.1   ;     Momentum constant:  0.5;Bias applied to 

hidden and output layer nodes with fixed input as (+1). 

Allowed number of iteration : 50 
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Figure 13. Decompress module 
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Table 3 

                                                                      
Table 4 

 

Test image Image format CR PSNR(db) Comp. Time Decom.Time 

Elaine TIF 4:1 31.0652 0.0691 0.1754 

Boat TIF 4:1 28.5801 0.0700 0.1844 

Pepper TIF 4:1 29.5953 0.0696 0.1875 

                                                                                          

Table 5 

 

Test image Image format CR PSNR(db) Comp. Time Decom.Time 

Elaine TIF 4:1 30.3149 0.0689 0.1834 

Boat TIF 4:1 28.4153 0.0693 0.1864 

Pepper BMP 4:1 31.4238 0.0696 0.1928 

 
              Table 6 

 

Test image Image format CR PSNR(db) Comp. Time Decom.Time 

Elaine TIF 8:1 29.4417 0.0336 0.1833 

Boat TIF 8:1 26.0333 0.0578 0.1790 

Pepper TIF 8:1 27.3020 0.0576 0.1821 

                Table 7 

 

Test image Image format CR PSNR(db) Comp. Time Decom.Time 

Elaine TIF 8:1 28.2311 0.0581 0.1795 

Boat TIF 8:1 26.2294 0.0583 0.1855 

Lena BMP 8:1 28.5439 0.0570 0.1871 

 
Table 8 

 

[Durai & Sarao] 

Proposed method 

Image CR PSNR(db) Time(sec) PSNR(db )         

Time(sec) 

Lena 4:1 28.91 182 32.60                66.69 

Pepper 4:1 29.04 188 31.43                 61.32 

Boat 4:1 29.12 178 29.68                 64.75 

 

 
Compression  ratio: 8:1 

 

Training 

 image 

Image 

 format 

Learning 

 Time 

No. of epoch. Error    CR PSNR(db) Comp. 

Time(sec.) 

Decom. 

Time(sec.) 

Lena BMP 1.771 200 0.035    4:1 15.15 0.0692 0.1665 

Training 

 image 

Image 

 format 

Learning 

 Time 

No. of epoch. Error    CR PSNR(db) Comp. 

Time(sec.) 

Decom. 

Time(sec.) 

Lena BMP 66.69 50 0.005 4:1 32.6017 0.0686 0.1881 

Training 

 image 

Image 

 format 

Learning 

 Time 

No. of epoch. Error    CR PSNR(db) Comp. 

Time(sec.) 

Decom. 

Time(sec.) 

Pepper TIF 61.32 50 0.005    4:1 31.4338 0.0692 0.1845 

Training 

 image 

Image 

 format 

Learning 

 Time 

No. of epoch. Error    CR PSNR(db) Comp. 

Time(sec.) 

Decom. 

Time(sec.) 

Lena BMP 43.03 50 0.0010 8:1 29.7739 0.0665 0.1799 

Training 

 image 

Image 

 format 

Learning 

 Time 

No. of epoch. Error    CR PSNR(db) Comp. 

Time(sec.) 

Decom. 

Time(sec.) 

Pepper TIF 47.4454 50 0.0012 8:1 28.6450 0.0675 0.1857 
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Figure(14). Performance by gradient decent 

VIII.  CONCLUSION 

   There is increasing demand of image compression based 
processing in various applications. Numbers of methods are 
available and up to some extent they are generating satisfactory 
results. However, with changing technology there is still a 
wider scope to work in this area.  New techniques may be 
proposed which could either replace or provide the support of 
existing methods.  Compression techniques based on neural 
network have good scope in both ways. The general perception 
about GA is that, it performs better over back propagation 
based learning has proven wrong in the present work. Even 
though same algorithm of GA performs very well for XOR 
classification and mapping of small data, for image 
compression.GA based learning for neural network is suffering 
from curse of very slow convergence and poor quality of 
compression. Whereas, back propagation has shown high 
converging speed with good quality of compression. The 
method is also applicable to a wide range of different image 
file types. Security of compressed data is another inherent 
advantage available if compression happen by neural network 
in direct approach (i.e. until weights are not available it is 
nearly impossible to find the contents of the image from 
compressed data).  
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